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Abstract  

Polymer-matrix composite material and structural adhesive repair and manufacturing have 
significant environmental costs. These costs were recently documented based on current and 
anticipated future Department of Defense (DOD) use of these materials. The principal issues for 
reducing the environmental impact and its associated cost are (1) reduction in hazardous waste 
by eliminating shelf-life limitations, (2) reduction in nitrogen oxides by replacing global heating 
of the part with localized heating, (3) reduction in volatile organic compound (VOC) emissions 
by accelerated curing and containment, and (4) reduction in hazardous waste by minimizing 
production debris through processing step management. The predicted reduction in hazardous 
waste, which affects both raw materials and waste-disposal costs, is 78% for composite materials 
and 95% for adhesives. Nitrogen oxides and VOC emissions can be reduced by 100% and 50% 
by replacing autoclave curing with radiation curing. Electron-beam (E-beam) curing has 
successfully been applied to E-beam-curable prepegs, adhesives, and vacuum-assisted resin 
transfer molding (VARTM) resins while maintaining process-specific viscosities and 
application-specific thermal performance. For the first time, there is credible evidence that 
E-beam-curable resin systems can be formulated to have sufficient toughness while maintaining 
other required process and performance criteria. In this work, both free radically and cationically 
cured E-beam resin systems have been formulated. 
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1. Introduction 

The electron-beam (E-beam) accelerator is a source of ionizing radiation that can generate 

ionic species, free radicals, and molecules in excited states capable of initiating and sustaining 

polymerization. Depending on the chemistry of the resin system being irradiated, polymerization 

can occur by free-radical as well as ionic mechanisms. The polymerization of 

acrylic/methacrylic systems, maleic and fumaric polyester resins, and thiolene systems proceeds 

via free-radical mechanisms without initiators. E-beam-induced polymerization of nitroethylene 

proceeds via anionic mechanisms, and epoxies are polymerized cationically with the appropriate 

catalyst under E-beam irradiation. Of these systems, free-radical-cured systems based on 

acrylate and methacrylate functionality and cationically cured epoxies catalyzed using 

diaryliodonium or triarylsulfonium salts like diphenyliodium hexalfluoroantimonate or 

triarylsulfonium hexalfluoroantimonate have shown the most promise for composites 

applications. Acrylate/methacrylate-based free-radical-cured systems have been studied 

extensively. These systems provide high reactivity, and they have good stiffness, good control 

over processing viscosity, and very long shelf life. 

Among the shortcomings associated with such systems are high cure shrinkage (8-20%), the 

potential for oxygen inhibition, and low glass transition (Tg) relative to high-temperature 

thermally cured epoxies. Cationically cured epoxies require a photoinitiator to enable 

polymerization. Cationically cured epoxies offer low shrinkage; exhibit high Tg; are not 

inhibited by oxygen; and do not require curing agents, as do their thermally cured counterparts. 

On the other hand, cationic systems tend to cure more slowly than acrylate/methacrylate systems, 

and the photoinitiators are easily poisoned by nucleophilic contaminants, which can often be 

found on the surfaces of reinforcing materials or as part of epoxy resin compositions. 

In this work, both free radically and cationically cured E-beam resin systems are being 

formulated. Cationic systems have been employed primarily for prepreg resin formulation, as 

discussed in section 2, while free-radical systems based on interpenetrating polymer networks 



have been used to formulate vacuum-assisted resin transfer molding (VARTM) resins and 

adhesives, as discussed in sections 3 and 4, respectively. 

2. E-Beam Prepreg Resin Formulation 

2.1 Introduction to E-Beam Prepreg Resin Formulation. Cationic resin formulation 

efforts follow a basic building-block approach to develop new toughened E-beam-curable resins 

for composite matrix materials. Sufficient quantities of the new resin are produced to develop 

chemical and mechanical properties, evaluate repair on an aircraft structure, and demonstrate the 

producibility of one structural component. 

Over the past 5 years, hundreds of model formulations of E-beam-curable resins have been 

prepared. Using epoxy backbone and functionality, the structure/property relationships of 

E-beam-curing resins have been similar to those of thermal-curing resins. In addition, over 

75 modifiers have been tried, with little success in improving the property of the resins. With 

thermoplastic and elastomeric toughening, either single or multiple phases, the modified resins 

still exhibit the high cross-link density characteristics of the epoxy continuous phase. 

It is believed that chain extension of the epoxy continuous phase is critical to enable the 

modifiers to nucleate their energy dissipation. This has not yet been attempted with 

E-beam-curing resins. It is important that a ductile fracture pattern be achieved. It is also 

important to lower the cross-link density to allow for plastic flow and to raise the composite 

interlaminar shear strength by increasing shear bonding. 

The primary function of modifiers is to toughen the resin. The addition of modifiers to the 

rigid extenders should not reduce the resin modulus at elevated temperature. For cationic curing 

epoxies, the modifier requirements are as follows: 

• an epoxy-compatible low-molecular-weight oligomer or monomer; 



• a nonnucleophillic, aromatic, or heterocyclic ring in the backbone; and 

• stability at ambient temperature. 

The modifier can be either a difunctional coreactant with a very high percent of reactivity or a 

multifunctional modifier. 

The objective of this task is to reformulate the E-beam-curing cationic resin, CAT-M, and 

associated adhesives to extend the toughness, durability, and thermal performance to meet 

250 °F/wet service for aircraft repair and remanufacturing. To date, cationic resins for prepreg 

applications meet Tg and modulus goals but provide very poor interlaminar strength and 

toughness. 

All matrix resins and adhesives are modified epoxies (a blend of four epoxies—Dow 742, 

556, 332, and 439) cured using diphenyliodonium hexaflouroantimonate cationic catalyst. The 

first stable species, a Bronsted acid of HT SbF6" along with H*F, is believed to be responsible 

for breaking the epoxy ring, ionizing the hydroxyl, and propagating via homopolymerization, 

which is the same as thermal cure (Figure 1). 

Ph2l+SbF6" + e~ —»- Ph 1+ + Ph" + SbF6"       H+^    HF + SbF5" 

H-y^vH    + HF  —*►   Polymer 
R R 

Figure 1. Example of Cationic-Based Epoxy Initiation Reaction. 

Although the propagation steps (Figure 2) and the chemistry are the same as in thermal cure, 

the mechanism to cure to a high level of completion in a solid state with electronically excited 

molecular species is unknown. 
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Figure 2. Example of Cationic-Based Epoxy Propagation Reaction. 

Trace water in the raw material can result in a 1,2 diol or glycol, which can react with groups 

to form a highly cross-linked brittle matrix. Cationic resins need to be toughened before they are 

of practical value, especially for aircraft applications. The most common way to achieve 

toughening is to coreact alcoholic hydroxyls in situ during curing. However, the usual reduction 

of modulus and Tg will occur. As with thermal curing, a balance between toughness and Tg or 

modulus is needed. Although the propagation mechanism is the same as in thermal cure, 

radiation-induced excited molecular intermediates drive the reaction to completion in the solid 

state. Thermal homopolymerization cures follow classic time, temperature, transformation 

(TTT) diagrams, where Tg is no more than 20 °C higher than Tcure. However, E-beam curing 

totally violates the classic TTT diagrams and Tg can routinely be as much as 150 °C higher than 

2.2 E-Beam Prepreg Resin Selection Criteria. The following are the criteria used for 

prepreg resin downselection. Studies found that each resin formulation had to pass all the tests 

indicated. If one test failed, no further testing was conducted for that particular formulation. 



(1) Radiation Cure Properties (determined from gamma calorimetry): 

• Gelation < 40 kGy. All of the cationic-initiated epoxies that were studied evidence 

gelation at doses less than 15 kGy. 

• Curing dose < 120 kGy. Curing dose depends on the type of the initiator used. 

(2) Dynamic Mechanical Analysis (DMA): 

• DMA modulus > 350 ksi (2.4 GPa). The modulus of most epoxy resins is about 450 ksi 

(3.1 GPa). However, the modulus slowly drops off as temperatures approach the Tg. 

• Tg > service temperature + 30 °C. 

(3) DMA After 2 hr at 177 °C Postcure: 

• Postcure DMA modulus < 10% different from DMA modulus prior to postcure. This test 

is to gauge the degree of cure from the initial E-beam curing. A difference between the 

two values of greater than 10% indicates that significant residual uncross-linked species 

remained after the initial cure. 

(4) DMA After 24-hr Water Boil: 

• Weight gain < 3%. 

• DMA modulus after water boil < 10% different from DMA modulus prior to 

conditioning. 

• Wet Tg > service temperature + 20 °C. 



2.3 E-Beam Prepreg Resin Formulation Approach. The goal of this formulation effort 

was to improve the toughness of baseline resins. Two types of toughening agents were added to 

the epoxy formulations: (1) polyethersulfone (PES) and (2) thermoplastic acrylic. The two best 

formulations, T-ll and T-14, were selected for further evaluation based on the gamma 

calorimetry and DMA data. Gamma calorimetry was used to determine the gel point. The 

E-beam dose at which the temperature begins to rise is defined as the gel point. DMA was used 

to determine the Tg. Downselected resins had to meet the requirements listed in section 2.2 prior 

to toughness evaluation. 

A series of nine model formulations was investigated (Table 1), including a dendrimer 

(Boltorn EZ, obtained from YLA, Inc.) that is an epoxy-terminated polyol with a viscosity of 

about 25,000 cps at ambient temperature. Reactive liquid rubbers such as Hycar rubber and 

related tougheners provide a neat balance of properties if precipitated during cure into a second 

phase with particle size in the 1-5 urn range. In E-beam curing, the precipitation of the rubbery 

phase was not achievable due to instant gelation. Therefore, the second-phase emulsion must be 

accomplished in the liquid state prior to cure. Several epoxies with varying polarities, with and 

without modifiers, were formulated with the dendrimer and screened via ultraviolet cure. All 

formulations cured to clear single-phase castings. The model expected to have the best chance of 

second-phase formation, M-25, was E-beam-cured along with M-24 as a control. Hydrogenated 

Bis-A (1510), which results in cycloaliphatic structures, accelerates reactions compared to its 

nonhydrogenated counterpart (332). However, all of the experiments performed to date 

indicated that there was no phase separation in these samples. 

The cured Model M series resins were tested by DMA, as shown in Table 2. M-22 was left 

in the oven overnight and gelled; no DMA data were obtained. Comparing M-21 and M-23 with 

controls (M-ll, M-13, and M-16), the multifunctional chain extender used in M-21 looks very 

encouraging. Past models with difunctional reactants indicated incomplete reaction. Although 

the initial modulus and Tg are lower for M-21 than for the controls, a 50% retention of modulus 

at higher temperature, 150 °C, was observed for M-21. The modifier used in M-21 warrants 

further investigation. This modifier can be added to prepreg and adhesive resins but will not be 

used for the VARTM resins because of its excessively high viscosity. 



Table 1. Model Formulations 

M Series 11 13 16 21 22 23 24 25 

332 100 94 100 60 70 80 — — 

556 70 70 
1510 30 30 
Chain extender-1 
(GP) 

— — — 15 — — — — 

Chain extender-2 
(GP) 

— — — — 30 20 — — 

Dendrimer 
Boltom-EZ 

8 

TBBPA 5 
542 — 6 
DPI-1 2.8 2.8 2.8 2.5 2.5 2.5 3 3 

Notes: GP = No Significance. Nomenclature only. 
TBBPA = Testbromobisphenol A. 
DPI-1 = Diphenyliodiumhexaflouroantimonate. 

Table 2. DMA Data 

M Series 11 13 16 21 23 24 25 

TE(°C) 170 170 175 140 150 150 125 
Temperature 
at 50% of 
modulus 

143 118 96 152 107 142 125 

Flexural 
modulus (ksi) 
[GPa] 

261 
[1.8] 

305 
[2.1] 

345 
[2.4] 

256 
[1.77] 

147 
[1.0] 

207 
[1.4] 

262 
[1.8] 

The difunctional chain extender used in M-23 reduces the initial modulus by 50%. This 

model will be eliminated unless significant toughening is observed in the resins. M-24 and 

M-25, with 8% dendrimer incorporation, were poorer in elevated-temperature properties. The 

results showed the expected plasticization from the modifier. The dendrimer did not precipitate 

as a second phase. The latest data indicate that the key to obtaining a successful precipitation of 

dendrimer lies in the blending of the single-phase epoxies used, including not only the types of 

epoxies but also the proportion of each epoxy in the blend.  Two blends of single-phase epoxy 



with the modifier precipitated out as a second phase after curing are currently being investigated 

and show promise. These resins will be E-beam-cured and evaluated. 

As expected, both types of thermoplastic modifier reduce the rate of curing, although 

thermoplastic (TP) acrylic appears to affect it less. TP acrylic is a micropulverized powder 

added like a filler and is a dispersed second phase with a partially solubilized and bonded particle 

interface. It did not chemically inhibit curing. Both T-l 1 and T-14 resins contain TP acrylic as a 

toughening agent. The DMA spectroscopy results for the two resins cured at 200 kGy are shown 

in Figures 3-6 for dry and wet (48-hr water boil) T-l 1 and dry and wet T-14. Dry Tg from E* 

for both systems is around 200 °C; wet Tg is about 170 °C. However, the DMA curves for T-14 

are much better than for T-ll, especially the much smaller ß peak from the tan 8 curve of T-14. 

The ß peak in the DMA is likely the low-molecular-weight components produced from the 

low-dose (<10 kGy) E-beam, which was used to prevent cracking of the sample during cure. 

Such short segmental chains created during the low-dose pass affect the final mechanical 

properties. However, in the case of composite curing, the exotherm during curing will likely 

dissipate through the carbon fibers, which should prevent the low-molecular-weight components, 

such as the ß peak, from forming. 

2.4 E-Beam Prepreg Resin Formulation Results. The resins that met the downselection 

criteria were further evaluated for initial mechanical properties. The dynamic moduli of the neat 

resins were also measured in a Rheometrics RDS-II dynamic mechanical spectrometer from the 

torsion of rectangular coupons. One set of coupons of each resin type was conditioned in a 

humidity cabinet set at 66 °C/95% relative humidity until saturated with moisture. Another 

coupon set of each resin type was desiccated prior to testing. The tests on dry and wet specimens 

were run at a scan rate of 5 °C/min. From plots of the data (Figures 3-6), it is apparent that the 

only unambiguous measure of Tg temperature can be obtained from the tan 8 curves. The Tg's 

from the tan 8 curves for dry and wet specimens of T-ll are 230 °C and 218 °C, respectively. 

The corresponding dry and wet Tg's for T-14 are 220 °C and 205 °C, respectively; they are very 

similar to the aforementioned DMA data. The wet Tg is therefore only slightly lower than the 

corresponding dry Tg for each material, although the shoulder in the tan 8 curves becomes more 
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Figure 6. Dynamic Mechanical Spectroscopy Results for Wet T-14 Resin. 
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2.4.1 Resin Density and Shrinkage. The resin density and shrinkage of T-14 are shown in 

Table 3. The difference in the cured and uncured resin density is negligible. The T-14 resin did 

not shrink but expanded slightly after curing at an E-beam dose of 200 kGy.   Similar behavior 

11 



Table 3. Physical Properties of T-14 Resin 

Density 
(g/ml) 

Condition Volumetric Shrinkage 
(%) 

Linear Shrinkage 

1.2124 Uncured — — 

1.2121 E-beam: 200 kGy -0.025 -0.008 

1.2123 
E-beam: 200 kGy 
thermal: 2hrat200°C 

-0.008 -0.003 

was observed for the resin postcured at 200 °C for 2 hr after E-beam curing. The postcure was 

conducted to relieve residual stresses caused by the high-energy E-beam curing. 

2.4.2 Differential Scanning Calorimetry. A cross section of the resin plaques, T-ll and 

T-14, revealed a variation in color from the surface (reddish brown) to the midplane (yellowish 

brown). Samples from both of these areas were analyzed by DSC. The sample from the T-ll 

interior of the plaque did not display any exotherm on heating in nitrogen up to 300 °C; however, 

the sample from the surface of the plaque displayed an exotherm (-3.3 mcal/mg) beginning at 

about 100 °C, indicating an advancement of cure with the thermal energy supplied. Similar 

results were observed for the T-14 sample. The center of the T-14 appeared to be fully cured 

when analyzed by DSC; however, the surface of the T-14 panel underwent additional cure in the 

DSC, exhibiting an exotherm of approximately 9.5 cal/g and peaking at about 135 °C. The color 

of the surface specimen also changed from reddish brown to yellow at the end of the run. These 

results indicate a nonuniform cure through the thickness of the as-received plaque, with the 

degree of cure higher in the interior than at the surface. 

2.4.3 Fracture Toughness. The fracture toughness of the neat resin was determined from 

compact tension tests in accordance with American Society for Testing of Materials (ASTM) 

E399-83. Test specimens with dimensions shown in Figure 8 were sectioned from the resin 

plaque, and notches were machined as indicated. One batch of specimens was then dried for a 

minimum of 48 hr in a vacuum oven at 40 °C and tested under ambient conditions. Two more 

batches of specimens were isothermally aged at 121 °C—the T-l 1 for 54 hr, the T-14 for 102 hr, 

and both for 168 hr—and tested at room temperature. At least five specimens were tested for the 

12 
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Figure 8. Schematic of Compact Tension Test Specimen (Dimensions in Inches). 

unaged baseline and each aging condition, and data were collected for four crack extensions in 

each specimen to give a minimum of 20 measurements of fracture toughness for each specimen 

batch. The test results are shown in Tables 4 and 5 for T-l 1 and T14, respectively. The data are 

fairly consistent and indicate a slight increase in fracture toughness with aging, possibly due to 

the additional thermal cure that occurs under these conditions. The fracture toughness of the 

unaged T-14 material is approximately 40% higher than that of unaged T-11. 

2.4.4 Flexural Properties. Flexural test specimens were sectioned from the T-l 1 plaque 

with faces perpendicular to the x and z directions. The latter specimens bowed after being 

sectioned, suggesting that cure shrinkage at the midplane of the plaque is greater than that at the 

surface (also observed in DSC studies). The results of flexural tests on as-fabricated (and 

vacuum dried) specimens, performed under ambient conditions, are summarized in Table 6. 

Although the midplane of the plaque appears to have a higher degree of cure than the surface, the 

results from Table 6 indicate no significant differences in the flexural properties of the two 

regions. However, the properties appear to be lower than the corresponding flexural stiffness 

and strength of neat thermally cured 3501-6 epoxy. 

One batch of T-l4 flexural test specimens was conditioned at 66 °C/95% relative humidity 

(RH) until saturated with moisture, while a second set was desiccated prior to testing. 
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Table 4. Fracture Toughness of T-ll Resin 

Specimen 
No. Conditioning Fracture Toughness 

(psi.in0§) 
Average 
(±s.dev.) 

KQ! KQ2 KQ3 KQ4 

T-ll-15 
Dried 48 hr at 
40°Cin 
vacuum oven 

265 271 282 255 

245 ± 30 
T-ll-17 285 240 277 257 

T-ll-20 215 229 301 279 

T-ll-12 221 232 228 224 

T-ll-14 215 211 207 204 

T-ll-02 

Aged 54 hr at 
121 °C in air 

271 285 291 281 

278 ± 12 
T-ll-08 284 287 287 270 

T-ll-19 254 273 278 269 

T-ll-01 274 278 276 258 

T-ll-04 262 289 302 291 

T-ll-03 

Aged 168 hr 
at 121 °C in 
air 

292 297 299 301 

293 ± 15 

T-ll-10 273 286 290 284 

T-ll-11 281 294 294 '288 

T-ll-13 302 307 323 295 

T-ll-16 246 290 297 298 

T-ll-18 309 309 301 285 

Three-point flexural tests were conducted at ambient temperature and 82 °C for both wet and dry 

T-14 specimens, with a minimum of six specimens for each material/test condition. The results 

are summarized in Figures 9 and 10. The flexural strengths are not as high as expected (or 

observed for thermally cured epoxies such as 3501-6), which may be due to the significant void 

content of the neat resin plaques. The flexural stiffness of the neat resin shows a significant 

decline with temperature at relatively low temperatures. For example, the flexural stiffness of 

dry T-14 is 410 ksi at room temperature; this modulus drops to 79% and 57% of the room- 

temperature values, respectively, at temperatures of 82 °C (180 °F) and 104 °C (220 °F). 

2.5 E-Beam Prepreg Resin Conclusions. Incorporation of dendrimers into a single-phase 

epoxy was successful. The dendrimer precipitated in the epoxy mixture as a second phase, 

resulting in resin with greater ductility and toughness than conventional one-phase epoxy. 

Investigations of model formulations will continue, in an effort to optimize dendrimers and chain 
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Table 5. Fracture Toughness of T-14 Resin 

Specimen 
No. Conditioning Fracture Toughness 

(psi.in0' ) 
Average 
(±s.dev.) 

KQ! KQ2 KQ3 KQ4 

T-14-05 

Dried 48 hr at 
40°Cin 
vacuum oven 

326 340 365 398 

342 ± 19 

T-14-11 330 340 347 327 

T-14-14 331 349 359 368 

T-14-17 328 340 350 361 

T-14-18 334 337 337 354 

T-14-19 330 304 334 313 
T-14-02 

Aged 102 hr 
at 121 °C in 
air 

425 373 384 378 

378 ± 20 

T-14-03 360 396 391 394 

T-14-04 316 355 384 

T-14-09 397 401 367 374 

T-14-13 359 365 377 385 

T-14-21 377 378 381 382 

T-14-01 

Aged 168 hr 
at 121 °C in 
air 

328 375 377 371 

370 ± 15 

T-14-06 351 360 353 381 

T-14-07 379 371 388 403 

T-14-08 363 366 368 377 

T-14-12 355 371 374 

T-14-15 367 366 386 388 

formulations, the most promising one will be selected for further development. This formulation 

will be used to prepreg AS4 carbon fibers at YLA, Inc. A small run (10 lb) of prepreg will be 

produced for initial evaluation of the prepreg quality and E-beam processing cycles. Additional 

prepreg will be manufactured for full characterization of the final prepreg system. The 

characterization will include physical and mechanical analyses at ambient and elevated wet 

temperatures. Photomicrographs and failure analyses using scanning electron microscopy 

(SEM) will also be conducted to characterize the quality of composite laminate and fiber/matrix 

interface properties. 
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Table 6. Room-Temperature Flexural Properties of Neat T-ll Resin 

Specimen 
Category 

Specimen 
No. 

Flexural 
Strength 

(ksi) 

Average 
(ksi) 

(s.dev.) 

Flexural 
Modulus 

(Msi) 

Average 
(Msi) 

(s.dev.) 

A 

T-11-X01 7360 — 0.445 — 

T-11-X05 7005 6625 0.437 0.433 
T-11-X06 6650 (635) 0.425 (0.008) 
T-11-X09 6435 — 0.427 — 

T-11-X10 5680 — 0.431 — 

B 

T-11-Z10 6985 — 0.422 — 

T-11-Z01 6540 6810 0.383 0.389 
T-11-Z03 6885 (355) 0.384 (0.019) 
T-11-Z07 7270 — 0.379 — 

T-11-Z02 6380 — 0.375 — 

C 

T-11-Z06 7890 — 0.405 — 

T-11-Z09 7020 7640 0.402 0.397 
T-11-Z05 9510 (1435) 0.408 (0.016) 
T-11-Z08 6150 — 0.374 — 

Notes: A = Specimens cut perpendicular to x-axis. 
B = Specimens cut perpendicular to z-axis and tested with surface from the plaque midplane in tension. 
C = Specimens cut perpendicular to the z-axis and tested with the original plaque surface in tension. 
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Figure 9.    Flexural Strength of Neat T-ll and T-14, Dry and After Saturation, With 
Moisture at 66 °C/95% RH. 
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Figure 10.   Flexural Modulus of Neat T-11 and T-14, Dry and After Saturation, With 
Moisture at 66 °C/95% RH. 

3. E-Beam VARTM Resin Formulation 

3.1 Introduction to E-Beam VARTM Resin Formulation. VARTM has become an 

important composites processing technique. In the VARTM process, the liquid resin converts 

into a nontacky solid during cure. Curing is accomplished via chemical reactions between 

monomers, which leads to the formation of a three-dimensional network. Energy for this process 

can be supplied in various forms, such as heat or radiation. There are various sources for 

radiation, including microwave, infrared (IR), ultraviolet (UV) light, and E-beam. Thermal 

curing has traditionally been preferred over radiation curing for fabricating thick polymer-matrix 

composites because of the limited penetration depth of radiation and the high cost of radiation 

equipment. However, recent developments and better E-beam equipment has revived interest in 

radiation curing. In addition to reduced processing time, E-beam curing offers many advantages 

over traditional thermal curing, including the following: 
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• unlimited material shelf life, 

• reduced energy consumption, 

• curing at selectable temperatures, 

• curing of complex-shaped parts with inexpensive tooling, 

• line-of-sight cure, 

• shorter curing time, 

• lower health risk, and 

• reduced cure shrinkage. 

In order to take advantage of E-beam curing, the developed resin should form a partially 

cured structure that can be easily transported for complete curing by E-beam. In addition, resins 

that can be processed using nonautoclave techniques such as VARTM and RTM should be 

developed to realize the significant cost savings associated with this technique. 

3.2 E-Beam VARTM Resin Selection Criteria. The most important requirement for 

VARTM resins is a viscosity of less than 500 cps at processing temperature. Presently available 

and commercially used VARTM resins are based on epoxy or vinyl ester. The presence of 

unsaturated bonds in vinyl-ester resin allows curing by several different methods. Vinyl-ester 

resins have Tg's around 250 °F, but they exhibit very low toughness compared to commercially 

available epoxy resins. On the other hand, thermally cured epoxy resins designed for VARTM 

often have a low Tg. The primary objective of this research is to develop a new generation of 

toughened VARTM resins with the following properties:  . 
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• viscosity less than 500 cps at processing temperature, 

• Tg between 250 °F and 350 °F, 

• fracture toughness above that of presently available resins, 

• ability to be cured thermally as well as by radiation, 

• unlimited shelf life, 

• environmental friendliness, and 

• commercial availability or easily scaleable monomers. 

3.3 E-Beam VARTM Resin Formulation Approach. Radiation can initiate free-radical or 

ionic polymerization. In this program, a new generation of radiation-cured systems based on 

free-radical curing is examined. This novel system uses interpenetrating polymer network (IPN) 

synthesis. Figure 11 shows the chemistry of the developed resin forming the IPN. In addition, 

work has been performed to develop cationic systems for VARTM application. 

The curing process of an epoxy-vinyl-based IPN system, as shown in Figure 11, involves 

step-growth as well as free-radical polymerization. The step-growth reaction takes place 

between epoxy and amine, while free-radical curing brings about polymerization in the vinyl 

group. As shown in Figure 11, the resin is a mixture of difunctional epoxy; tetrafunctional 

amine, a unique monomer with epoxy and vinyl functionality; and divinyl monomers. The resin 

mixture is cured initially at low temperature, where the epoxy-amine forms a polymer network, 

while the vinyl monomer remains unreacted inside the network. The epoxy end of the unique 

monomer used in the resin becomes a part of the epoxy-amine network upon initial thermal 

curing, while the vinyl end remains pendant on the network. This constitutes a C-stage structure. 

The C-stage material is then cured completely by E-beam to form a second network of vinyl 
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Reactants Heat to C-stage E-beam curing 
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Di-epoxy 
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Epoxy-amine network 

Vinyl network 

Figure 11. Chemistry of an IPN-Based VARTM Resin. 

monomers or diluents. The polymerization of pendant vinyl groups along with the diluents 

provides co-continuity between the two networks. The combination of two networks forms an 

IPN. Since the two polymer networks were formed sequentially, it can be called a sequential 

IPN. 

The advanced feature of this formulation approach is that the resin can be tailored in various 

ways to meet any specific property requirement. By varying the functionality of the epoxy 

monomer, the cross-linking density of the C-stage system—and, hence, the Tg of the cured 

system—can be varied. The number of pendant double bonds on the epoxy-amine network can 

also be varied, which affects the cross-linking density of the vinyl network with the epoxy-amine 

network. The effect on the property of the cured system when the diluent is changed is also 

measurable.    The resin system shown in Figure 11 meets the viscosity requirement of the 
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VARTM process and also provides a Tg temperature in the range of 250 °F. To approach a Tg of 

350 °F, the cross-linking density of the C-stage network and the number of pendant double 

bonds were varied. The composition of formulated high-Tg resin was varied to form a high-Tg 

resin with moderate viscosity and a high-Tg resin with low viscosity. The toughness of these 

materials does not meet the standard set by epoxy-based VARTM resins. To improve the 

toughness of developed EPN-based VARTM resins, two approaches were taken (Figure 12): 

(1) synthesis of a new homo- or copolymer by varying the reactive diluent and 

(2) modification of the existing polymer through the addition of a second polymeric 

component. 

Low-Tg (250 °F) and High-Tg (350 °F) 
systems as a base resin 

Invoke crazing Effect of Co-continuous 
structure 

^ r 

' i r                                                   i r i 

Addition of rubber 
modifier 

Addition of dendritic 
polymer 

Diluent selection 

Figure 12. Approach Used to Toughen the VARTM Resin. 
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The first approach involved the use of diluents with different functionalities as well as 

different backbone structures. The second approach is also called blending. Rubber is the most 

commonly employed blending agent for the toughening of polymers. It provides a disperse 

phase into a rigid plastic matrix and also provokes yielding of the matrix material. As a result, 

the blend shows considerably higher fracture toughness than the parent polymer. However, in 

order to achieve satisfactory performance, a certain degree of chemical interaction between the 

resin and the modifier is required to improve the interfacial adhesion. To overcome this 

limitation, a compatible rubber agent whose functionality is adjusted according to the chemical 

nature of the matrix was added. In addition to the use of a rubber modifier, the second approach 

also involved the use of dendritic polymers. These polymers have a functionality compatible 

with the matrix that makes them soluble in uncured resin. However, during curing, they 

precipitate from the solution and phase separate. The second phase results in overall toughening 

of the two-phase blend. 

3.4 E-Beam VARTM Resin Formulation Results 

3.4.1 Resin Synthesis. As mentioned earlier, the developed resin based on an IPN system is 

made up of two parts: the step-growth epoxy-amine part and the free-radical-curable vinyl part. 

The base resins used in the study are CCM1, CCM2, and CCM3 (Table 7). They all contain 

diluents but no rubber modifier. CCM1 is a low-Tg resin with low viscosity. CCM2 and CCM3 

are the base resins with high Tg. The viscosity of CCM2 is lower than that of CCM3. 

Table 7. Base Resin Properties 

Resin Tg Viscosity 
(cp) 

30 °C 40 °C 50 °C 

CCM1 Low (250 °F) 200 170 95 
CCM2 High (350 °F) 340 135 125 
CCM3 High (350 °F) 1050 550 200 
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The replacement of diluents or addition of a modifier to these developed resins to increase 

the toughness created a series of resins. The features and properties of diluents and rubber 

modifiers investigated are shown in Table 8. 

Table 8. Rubber Modifiers and Diluents Used for Toughening 

Features Viscosity 
(25 °C) 

Functionality 

Dl Hard and high Ts 8 cps Di- 
D2 Aromatic backbone — Di- 
D3 Flexible — Mono- 
D4 Flexible and high-impact strength 25 cps Di- 
D5 Cyclic group with high Te 11 cps Mono- 
D6 Low shrinkage 67 cps Di- 
Rl High elastomer content and high viscosity 1,500-2,500 poise Di- 
R2 High elastomer content and moderate viscosity 40-80 poise Di- 
R3 High elastomer content and moderate viscosity 20 poise Di- 

The series of resins formulated using these constituents and base resin is tabulated with their 

composition in Table 9. Each number in parentheses suggests the overall weight percentage of 

that component in a resin mixture. Each of these sets was mixed thoroughly and degassed before 

being cured at low temperature to form a C-stage structure. The C-stage material was then 

exposed to E-beam for complete curing. 

3.4.2 Determination ofE-Beam Dose. To determine the optimum E-beam dose required for 

cure, Fourier transform infrared (FTIR) spectroscopy was employed. Several samples of one 

formulation were C-staged and then exposed to varying levels of E-beam dose. The conversion 

obtained as a result of E-beam exposure was then measured and compared. The range of E-beam 

dose selected was from 0.5 Mrad to 30 Mrad because most of the radiation-cured systems 

evaluated thus far cure between 7 and 25 Mrad. The plot of E-beam dose vs. percentage 

conversion of vinyl group is shown in Figure 13. The conversion increases rapidly with an 

increase in E-beam dose for low doses. Once the E-beam dose increases beyond 2 Mrad, the 

increase in conversion slows down.   Since the increase in dose also increases process cost, a 
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Table 9. Developed Resin Composition 

Set Base Resin Diluents 
(Overall Percentage) 

Modifier 
(Overall Percentage) 

CCM4 CCM1 Dl (30) D2 (20) RK5) 
CCM5 CCM1 Dl (30) D2 (20) Rl (10) 
CCM6 CCM2 Dl (30) D2 (20) RH5) 
CCM7 CCM2 Dl (30) D2 (20) Rl (10) 
CCM8 CCM3 Dl (25) D2 (25) Rl (5) 
CCM9 CCM3 Dl (25) D2 (25) Rl (10) 

CCM10 CCM1 Dl (30) D2 (20) R2(10) 
CCM11 CCM1 Dl (30) D2 (20) R3 (10) 
CCM12 CCM2 Dl (30) D2 (20) R2 (10) 
CCM13 CCM2 Dl (30) D2 (20) R3 (10) 
CCM14 CCM3 Dl (25) D2 (25) R2(10) 
CCM15 CCM3 Dl (25) D2 (25) R3 (10) 
CCM16 CCM1 D3 (30) D2 (20) — 

CCM17 CCM1 D4 (30) D2 (20) — 

CCM18 CCM1 D5 (30) D2 (20) — 

CCM19 CCM1 D6 (30) D2 (20) — 

CCM20 CCM2 D3 (30) D2 (20) — 

CCM21 CCM2 D4 (30) D2 (20) — 

CCM22 CCM2 D5 (30) D2 (20) — 

CCM23 CCM2 D6 (30) D2 (20) — 

CCM24 CCM3 D3 (25) D2 (25) — 

CCM25 CCM3 D4 (25) D2 (25) — 

CCM26 CCM3 D5 (25) D2 (25) — 

CCM27 CCM3 D6 (25) D2 (25) 

tradeoff exists between conversion and process economy. Based on that, for the present work, a 

dose of 20 Mrad was selected as optimum. 

3.4.3 Viscosity Evaluation. Resin viscosity is an important factor in VARTM processing. 

The viscosity of the developed resin was measured at the beginning of the curing process at three 

temperatures. Viscosity experiments were carried out on a Brookfield Model LVDVII + digital 

viscometer. Sample temperature was controlled with the Brookfield small-sample adapter and 

Brookfield bath/circulator model TC-200. The viscometer consists of a fixed outer cylinder and 

a spindle that rotates at a constant angular velocity. The spindle is connected to a torque spring, 
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Figure 13. Percentage Conversion of Vinyl Group as a Function of E-Beam Dose. 

which measures the factional resistance offered by the sample.   The viscometer converts the 

resistance into viscosity. 

All components of the synthesized resin, except the curing agent, were mixed and heated to 

the desired temperature. The curing agent amine was added after the equilibrium temperature 

was reached. Approximately 10 ml of sample was measured and used for viscosity analysis. 

After the addition of amine, initial viscosity was measured. Viscosity data were collected at 

various temperatures. 

3.4.4 Tg Measurement. The Tg of the cured resin was measured using a DuPont 983 

Dynamic Mechanical Analyzer (DMA) interfaced with a DuPont 9900 thermal analyzer. A 

sample with dimensions of approximately 30 mm x 10 mm x 2.5 mm was prepared from the 

cured resin matrix. The specimens were placed in the test grips, and the arm displacement was 

zeroed. The heater assembly surrounding the sample provided a uniform temperature 

environment. 
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The DMA was run in fixed-frequency mode at 1 Hz. The peak-to-peak amplitude was kept 

between 0.1 and 0.3 mm. The sample was heated at 5 °C/min to the final temperature of 200 °C. 

The shear storage and loss moduli obtained were stored as a function of temperature. 

3.4.5 Fracture Toughness Measurement. The energy required to fracture the cured 

material surface was measured using the ASTM D5045 method. The test is designed to 

characterize the toughness of plastics in terms of the energy per unit area of crack surface or 

critical strain energy release rate, Gic, at fracture initiation. 

Specimens for toughness testing were prepared according to the ASTM standard. The 

sample was then sectioned to meet ASTM standards. The next step in preparing the specimen 

after cutting is notching to initiate the crack. Once the notch was made, it was measured and 

checked according to the ASTM standard. For each set under investigation, five specimens were 

prepared. One specimen from each set was left unnotched to serve as a control specimen and to 

enable determination of a compliance calibration curve. 

3.4.6 CCM1 -Based Systems. Figure 14 shows the initial viscosity of all the systems based 

on CCM1 resin at various temperatures. The initial viscosity of all sets decreases with an 

increase in temperature. They all exhibit viscosity significantly below the criteria required for 

VARTM processing. 

The viscosity, Tg, storage modulus E', GQ, and KQ data for CCM1-based resins are shown in 

Table 10. Empty entries in the table indicate that the analysis was underway at the time of this 

report. The combined analysis gives a broader view on the performance of the resin. CCM4 and 

CCM5, the systems with a rubber modifier added, show no change from the base resin in terms 

of Tg. The plot of storage modulus and loss modulus as a function of temperature for the CCM4 

system is shown in Figure 15. At Tg, the material becomes rubberlike. Hence, the loss modulus 

shows a peak at Tg temperature. For the CCM4 system, Tg is well exhibited by a distinct peak of 

loss modulus at 120 °C. Although the viscosity of the CCM5 resin is higher than that of the base 

resin CCM1, it is significantly lower than required by VARTM processing. The addition of 

10-weight-percent (wt%) Rl rubber to the system increases the fracture toughness of the base 
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Figure 14. Viscosity Analysis of CCMl-Based Modified Systems. 

Table 10. Properties of CCMl-Based Modified Resins 

Viscosity 
(cps) Tg 

(°Q 

E' at Room 
Temperature 

(GPa) (J/m2) 
KQ 

(MPa.m0-5) 30 °C 40 °C 50 °C 

CCM4 693 450 307 117 3.25 — — 

CCM5 1200 850 450 120 2.15 883.86 2.034 

CCM10 735 565 363 95 — — — 

CCM11 475 315 210 120 2.5 464.82 1.452 

CCM16 1080 985 625 85 2.25 2458.84 — 

CCM17 720 710 680 70 3.0 3959.72 — 

CCM18 275 175 112 116 2.8 — — 

CCM19 1512 885 540 72 2.5 4330.16 3.532 

resin by approximately 134%. The addition of low-viscosity rubber R3 to the base resin, CCM1, 

also results in a Tg of about 120 °C. However, the critical strain energy release rate at the 

fracture initiation is less than that of the base resin. 
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Figure 15. DMA Analysis of the CCM4 Resin System. 

The effect of replacing the diluent of the CCM1 resin resulted in a low Tg of the modified 

system. The diluents D3, D4, and D6—corresponding to resin systems CCM16, CCM17, and 

CCM19, respectively—resulted in Tg below 100 °C. These diluents were used because of their 

flexible backbones. The resin systems with these flexible diluents failed at high fracture energy. 

They exhibited fracture toughness values 4 to 6 times higher than those of the base resin, but at 

the expense of the Tg. The resin system CCM18 exhibited a Tg value similar to that of the base 

resin. The plot of storage and loss modulus as a function of temperature for the CCM18 system 

is shown in Figure 16. The storage modulus shows the elastic energy stored by the system. 

Generally, the storage modulus of the system decreases with the increase in temperature. As 

seen in Figure 16, for the CCM18 system, the storage modulus remains unchanged up to 100 °C. 

This characteristic of the system indicates higher fracture toughness. Most of the developed 

systems showed acceptable storage modulus at room temperature. 
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Figure 16. Storage and Loss Moduli as a Function of Temperature for the CCM18 Resin. 

3.4.7 CCM2-Based Systems. The CCM2 resin is a high-Tg low-viscosity resin. The 

modifications used for the CCM1 system were also applied to the CCM2 system. The viscosity 

analysis of the modified CCM2 system is shown in Figure 17. The results of fracture toughness 

and viscosity analysis along with Tg analysis are shown in Table 11. The cured CCM2 resin has 

higher cross-linking than the CCM1 resin, which gives a higher Tg for the CCM2 resin. 

However, the increase in cross-linking density reduces the toughness of the system. It has been 

shown that the addition of rubber to a highly cross-linked system does not provide significant 

improvements in toughness [1]. However, the system under investigation, CCM2, does not fall 

in that highly cross-linked category. Hence, little attempt was made to increase the toughness 

via the addition of rubber modifiers. The addition of 5 wt% rubber (CCM6) to the CCM2-based 

resin yields a fracture toughness of 487.22 J/m2. Further addition of rubber modifier results in 

deterioration of toughness. 

Another common approach to increase the toughness of the highly cross-linked materials is 

to blend them with the ductile tough materials. Here, a similar concept was adopted in the form 
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Figure 17. Viscosity Analysis of CCM2-Based Modified Systems. 

Table 11. Properties of CCM2-Based Modified Resins 

Viscosity 

(cps - 50 °C) 
Tg 

(°C) 

E' at Room 
Temperature 

(GPa) 
Gic 

(J/m2) 
Kic 

(Mpa.m0-5) 

CCM6 267 148 2.15 487.22 1.625 

CCM7 392 150 2.5 289.35 1.079 

CCM12 309 142 1.75 — — 

CCM13 264 152 — 367.93 — 

CCM20 465 99 3.0 315.45 — 

CCM22 375 155 1.55 379.11 1.268 

CCM23 467 75 2.0 — 
          ■'■ 

of diluent replacement. The CCM20 to CCM24 resins show the effect of diluent on Tg. Since, 

the CCM21 resin could not be cured, it is not included in Table 11. The use of diluent with 

flexible backbone such as D4 and D6 reduced the Tg of the base resin dramatically. The addition 

of D5 diluent with cyclic backbone to the base resin (CCM22) imparts toughness similar to the 

CCM13 system with rubber modifier R3. Figure 18 shows the storage and loss moduli as a 

function of temperature for the CCM7 system. The plot of loss modulus vs. temperature shows a 
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Single peak at 150 °C for the rubber-modified CCM7 system.  The storage modulus values for 

the other systems are shown in Table 11. 

3.4.8 CCM3-Based Systems. The CCM3 system is similar in C-stage structure to the CCM2 

system. However, the diluent content makes this system viscous compared to CCM2. The initial 

viscosity of the CCM3-based modified resin at various temperatures is shown in Figure 19. The 

VARTM process allows the use of temperatures higher than room temperature. At 50 °C, the 

viscosities of the modified resins fall close to the limit for VARTM processing. 
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Figure 19. Initial Viscosity of the CCM3-Based Toughened Systems. 

Table 12 shows the rheological, thermomechanical, and mechanical properties of 

CCM3-based modified systems. CCM15 resin is the base resin CCM3 with the addition of 

rubber modifier R3. This system exhibited high toughness but low Tg. CCM26, the system 

containing the D5 diluent, demonstrated an excellent Tg. The toughness of the CCM26 system is 

also comparable to that of the rubber-modified CCM14 resin. The DMA analysis of cured the 

32 



Table 12. Properties of CCM3-Based Modified Resins 

Viscosity 
(cp at 50 °C) 

Tg 
(°C) 

E' at Room 
Temperature 

(GPa) 
Gicin 
(J/m2) 

Kic 
(Mpa.ma5) 

CCM8 505 160 3.15 — — 

CCM9 1,000 156 2.6 — — 
CCM14 495 144 2.65 472.49 — 
CCM15 565 139 2.75 647.42 — 
CCM24 900 — — 233.46 1.0227 
CCM26 860 165 2.15 472.22 1.492 
CCM27 950 120 2.85 — — 

CCM26 system is shown in Figure 20.  The CCM3-based systems all show exceptionally high 

values of storage modulus at room temperature, as shown in Table 12. 

50 100 150 200 

Temperature (°C) 
250 

Figure 20. Thermomechanical Analysis of CCM26 (CCM3 With Diluent D5 Added). 

3.5   E-Beam VARTM Resin Conclusions.   The toughening of base free-radical-cured 

VARTM resin was carried out by the addition of a rubber modifier and replacement of the 
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diluent. The addition of high-viscosity rubber Rl to low and high-Tg resins increased the 

toughness without affecting the Tg. Although the viscosity was also increased, it remained 

within the range required by the VARTM process. The addition of moderate-viscosity rubber 

(R2 and R3) did not demonstrate the performance achieved with the Rl rubber modifier. 

The approach of replacing the diluent of the base resin to increase the toughness was selected 

because the diluents form a co-continuous structure upon curing, which, in turn, governs the 

properties of the cured resin. The selection of diluents with a flexible backbone such as D3, D4, 

and D6 yielded high toughness, but at the expense of Tg. The appropriate diluent was one with a 

cyclic or hard backbone (e.g., D5). The resin mixture with the D5 showed an increase in 

toughness without sacrificing the thermomechanical properties of the cured material. 

Overall, most of the modified systems exhibited viscosity within the range required for 

VARTM processing. They achieved or surpassed the Tg of vinyl-ester resin, while providing the 

high toughness of epoxy-based VARTM resin. 

Future work is aimed at the use of dendritic polymers to increase the toughness of the base 

resin. Also, the issue of combining the rubber modifier with the diluent is unexplored. 

Significant potential exists to increase the toughness of the base resin if a tough diluent such as 

D5 can be combined with a rubber modifier such as Rl. Microscopic examination of the 

toughened material will also be addressed in future work. Two of the resins previously described 

will be used to fabricate composite panels using AS4 fabric preforms and will become the 

baseline system in the development of E-beam VARTM resins. 

Cationically cured systems are also being evaluated, with the most promising formulation 

being VAEB-8, which exhibits resin shrinkage of less than 2%, a dry Tg of 150 °C, and a wet Tg 

of 125 °C. Composite laminates for evaluation will be fabricated using VAEB-8 injected at 

55 °C into AS4 fabric preforms and E-beam cured. 
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Work continues in the development of cationic VARTM systems to attain a better balance of 

viscosity, pot life, and retention of an elevated-temperature modulus. 

4. E-Beam Repair Adhesive Formulation 

4.1 Introduction to E-Beam Repair Adhesive Formulation. The ability to perform 

effective repairs of composite structures on military structures will be governed to a large extent 

by the properties of the repair adhesives. Previous research [2] has shown that there are no 

E-beam adhesives that match the performance standards of thermally cured epoxies. This may 

be attributed to a number of factors. Notably, the inability to effectively toughen the E-beam 

resins results in adhesives with poor resistance to peel and delamination. Hence, the 

development of adhesives in this program mirrors the other E-beam resin development efforts in 

that a major goal is to toughen the existing E-beam systems so that they can be used as structural 

adhesives. Furthermore, adhesive materials must be available in a variety of product forms to 

provide flexibility in repair and remanufacturing operations. These product forms include 

two-part pastes, one-part pastes, supported and unsupported films, and low-viscosity liquids. 

Initial efforts have focused on development of toughened two-part pastes and infmite-shelf-life 

one-part pastes and films. To date, the greatest success has been in formulating two-part 

adhesives based on the CCM series of IPN-based E-beam resins. 

4.2 E-Beam Repair Adhesive Selection Criteria. The adhesives currently being used for 

thin-walled structural repair will be evaluated to provide baseline property values. Most repairs 

of these types employ either 250 °F or 350 °F curable epoxy film adhesives or two-part pastes. 

These materials have been well characterized. Table 13 gives some typical target values for 

adhesive formulations based on the properties of thermally cured adhesive baselines. The goal 

will be to approach these performance target values for each relevant product form. 

Critical properties to be measured and tabulated will include characterization of the adhesive 

Tg (dry and wet), elastic constants, strength, and toughness, as well as adhesive bond properties 

for metal-metal, composite-composite, and composite-metal joints.   The properties of the new 
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Table 13. Adhesive Formulations 

Property Target Value 

Tg temperature 95-105 °C 
Service temperature 82-95 °C 
Tensile modulus (RT) 3.0 GPa 

Metal-Metal Bonds 
Lap-shear strength RT (Al-Al) 35-43 MPa 
Lap-shear strength service 
temperature 

16-28 MPa 

Floating roller peel 8-11 KN/m 
Sandwich peel 75-100 Nm/m 

resins will be compared to those of the baseline thermally cured adhesives to assess relative 

performance. The results of the mechanical testing will be augmented by corresponding 

chemical and physical characterization of the resins. 

Lap-shear strength for both aluminum-aluminum and composite-composite joints was the 

primary screening evaluation. Adhesives that matched or approached the performance of their 

thermally cured counterparts were selected for further evaluation. This screening procedure also 

permitted rapid feedback on performance deficiencies in certain instances. For downselected 

candidates, the bonded adhesive joints will be evaluated using climbing drum peel (ASTM 

D1781), lap-shear (ASTM D1002), wedge-crack extension (ASTM D3762), and other testing, as 

deemed necessary, to gain confidence in the properties of newly developed materials. 

4.3 E-Beam Repair Adhesive Formulation Approach. As discussed earlier, two major 

classes of radiation-curable systems will be used in this program. These include the low- 

shrinkage C-stageable free-radical CCM systems based on epoxy and urethane chemistries, as 

well as the cationically cured CAT-M systems. During this task, activities will focus on 

modifying these systems to improve fracture toughness. The team developed these systems by 

formulating toughening agents into the base resins, as is typical of a second-phase toughener, or 

via novel approaches to toughening based on resin chemistry, whereby flexible linkages are 

incorporated into the radiation-curable resin backbone. 
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The untoughened s-IPNs have good strength properties but are quite brittle. However, these 

systems may be toughened through a number of methods. In thermally cured epoxies, toughness 

is improved by the addition of rubber, which is chemically bonded into the network through 

reactive end groups [3]. The rubber components that were studied for adhesives evaluation 

included various butadiene-nitrile liquid rubbers, dendritic polymers, and preformed particles. 

Also, suitable diluents were used to modify base formulations to control the viscosity of 

formulated adhesives. Table 14 lists the modifiers and diluents that were used in this work. 

Table 14. Modifiers and Diluents for Adhesives Formulation 

ID Description Functionality 

Ml CTBN - Epoxy adduct Epoxy 
M2 CTBN - Epoxy adduct Epoxy 
M3 CTBN - Epoxy adduct Epoxy 
M4 CTBN - adduct (low viscosity) Epoxy 
M5 CTBN - adduct (low viscosity) Epoxy 
M6 CTBN Carboxy 
M7 ATBN Amine 
M8 ATBN Amine 
M9 ETBN - styrene blend Epoxy - vinyl 
MIO ETBN — 

Mil Polester polyol - epoxy Epoxy 
M12 Polester polyol - epoxy Epoxy 
M13 CORE-shell acrylic — 

Dl Low-viscosity methacrylate Methacrylate 
D2 Viscosity Dl-methacrylate Methacrylate 
D3 Low-Viscosity mono methacrylate Methacrylate 
CE1 Epoxy chain extender — 

CE2 Epoxy chain extender — 

Base resin formulations for the IPN-based adhesives were similar to those described earlier. 

However, diluent and modifier selection were used to control processing and cure properties. 

The diepoxide that was selected is the bis-phenol-A-based epoxy, EPON 828, provided by Shell 

Chemical, Inc. Along with the selected bis (p-aminocyclohexyl) methane, PACM, the epoxy 

demonstrates a Tg of approximately 175 °C. This temperature is suitable for adhesive repair of 

Army materials; however, the Tg of the epoxy network can be increased through the addition of a 
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high-function (tetrafunctional) amine or aromatic amines. PACM, an aliphatic amine provided 

by Air Products, Inc., is selected because of the importance of the environmental impact of the 

resin formulations. PACM is less caustic and hazardous than alternative aromatic amines. 

4.3.1 Epoxy Adhesive Toughening. As with most pure epoxy networks, the E-beam-cured 

EPON 828/PACM/methacrylate network is very brittle. Consequently, the material is 

inadequate for most adhesive applications. Improving the toughness of these s-IPN blends is 

key to creating an alternative cure adhesive by this approach. Other research efforts have 

demonstrated the challenges associated with toughening epoxy resins, especially cationic epoxy 

resins that are cured through E-beam methods [2, 4]. However, toughening of brittle epoxy 

networks has been accomplished by Kinloch, Riew, and others over the past decade [5]. The 

body of work in toughening of epoxy networks has demonstrated that brittle thermosets can be 

toughened without a significant sacrifice in Tg through two approaches: the addition of rubber 

and the addition of chain extenders. 

The first method of toughening involves the addition of a second phase, commonly a rubber 

or TP, to the thermoset. A functionalized rubber is added to the uncured epoxide/amine mixture 

and co-cured with the epoxy network. During cure, the rubber becomes insoluble in the growing 

epoxy network and separates into rubber domains. The small rubber concentration [6] in the 

network causes discrete rubber particles (0.2-5 \xm) to form inside the network [7-9]. These 

rubber particles improve toughness by changing the energy absorption of the matrix and 

inhibiting premature failure of the thermoset, which often results from small defects. 

Alternatively, the second phase is added as rubber or TP particles. The size, surface binding, and 

concentration of the particles greatly influences the toughness of the thermoset [7, 8]. Often, the 

surface of the particles is coated with an adhesion promoter to enhance the interaction between 

the thermoset and the filler. Generally, the addition of discrete particles for toughening is less 

effective than the addition of reactive rubbers [3]. 

The second method of toughening thermosets is to add chain extenders to the network [9]. 

The average distance between cross-links is a key parameter governing the toughness of the 
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network. Through insertion of a fraction of oligomers into the network, the average number of 

cross-links per unit volume is reduced, providing greater flexibility to the network although 

usually at the expense of the Tg. 

Toughening of s-IPNs has been evaluated using a reactive rubber and a reactive dendrimer. 

Upon curing, both the rubber and the dendrimers phase-separate into discrete rubber domains. 

Although cure conditions reportedly affect the formation of the rubber domain size and, 

consequently, the overall matrix toughness, the impact of cure conditions has not yet been 

evaluated in this study. A maximum toughness enhancement in a pure-epoxy matrix is obtained 

with rubber loading between 8% and 12% by weight. Dendrimer suppliers report that optimum 

toughness of epoxy formulas of these materials is also 10% by weight. For the purposes of this 

report, a number of reactive rubber and dendrimer-like polymers were explored; the tested 

materials are listed with their characteristics in Table 14. 

4.3.2 Infinite Shelf-Life Formulation Methods. Base formulation of experimental one-part 

adhesive resins is designed by controlling the extent of reaction of the epoxy matrix. The issue 

of gelation in condensation-type reactions where monomer A-A reacts with monomer B-B and 

B3N can be predicted and controlled. Gelation is the point when an infinite network exists. The 

gel point can be predicted from the number and functionality of the monomers present in the 

condensation reaction. The following is an example of a condensation reaction: 

A+A + B3N -» A-A-BNBB-AA-BBNB-, 

where B3N is trifunctional (f = 3). The critical point for gelation (a,.), defined as the point extent 

of conversion of "B" required to form an infinite network, is defined as follows: 

oc=l/(f-D- 

Thus, controlling the extent of reaction conversion is achieved by controlling either the 

amine functionality or the epoxy functionality of the system.     A blend of mono- and 
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multifunctional amines generates a high-molecular-weight soluble hyperbranched polymer. The 

stability of such a molecule is dependent upon the reaction completion of the epoxide/amine. 

Alternatively, monofunctional epoxides can be added to the mixture to decrease the probability 

of infinite network formation. 

Initial experiments demonstrated that limiting the epoxy network formation in EPON 

828/PACM/dimethacrylate adhesives produces a processible material with high stability. The 

epoxy network was thermally cured in the presence of the free-radical monomers to create a 

paste-like substance. The amine was suitably end-capped to prevent premature gelation but 

permit network formation during E-beam radiation. These materials were then evaluated for 

shelf-life stability using FTIR. The results are reported in subsequent sections. 

4.4 E-Beam Repair Adhesive Formulation Results. The toughness of model adhesive 

formulation was evaluated using single-edge notch flexure specimens. The tests were performed 

in accordance with ASTM D5045. The effect of 5% rubber addition to base IPN resins was, in 

some instances, dramatic. The toughness was increased subtantially for many of the modifiers 

that were examined. In two cases, toughness increased by nearly a factor of 2. Further research 

is needed to optimize the toughness improvements in these resin systems, and this work is 

presently ongoing. However, the ability to toughen these E-beam resins is significant and is a 

major accomplishment to date. The improved toughness should have a direct impact on the 

performance of joints produced using these modified resins. The mechanical properties of the 

adhesives have been tested on composite lap-shear specimens. Prepared samples were tested as 

both green and fully cured adhesive specimens. The results are shown in Tables 15 and 16. 

From the mechanical data, it is evident that the bond strengths of the E-beam adhesives are 

adequate. Composite failure was observed in all samples, except for CAOl, which is a one-part 

adhesive formulation. The toughened one-part adhesive, CA02, demonstrated both better 

adhesive strength and better toughness than the untoughened case. The source of this 

improvement has not yet been determined. 
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Table 15. Double-Notch Lap-Shear Results 

Sample ID Bond Strength Tg 
(°Q 

CA5 2000±100PSI 120 
CA6 2300±100PSI 121 
CAOl 1550±100PSIa 90" 
CA02 2000±100PSI 88b 

Dexter HysolEA9394 3200±100PSI 78 

Sample failed in the bondline. 
1 Epoxy network not fully cured (FTIR). 

Table 16. Lap-Shear Results 

Sample ID Bond Strength Tg 

(°C) 

CA1 (2-pt) 2900±100 PSI 120 
CA2 (2-pt) 2750±100PSI 121 
CA3 (2-pt) 3100±100PSI 120 
CA4 (2-pt) 34001100 PSI 121 
Dexter Hysol EA9394 3700±100PSI 78 

The Tg of each of these adhesive samples was also measured using DMA. The results are 

also listed in Tables 15 and 16. The target Tg of a 250 °F adhesive is well within the scope of 

this effort. Work is currently being done to further increase the Tg of the network by modifying 

the acrylate network content and the ratio of epoxy to acrylate in the mixture. 

Since these adhesives produced joints that exceeded the strengths of the composite 

adherends, further tests were performed on aluminum-aluminum lap joints to determine the 

ultimate properties of the adhesive. Aluminum (7075-T6) coupons were surface-treated prior to 

bonding. The surface treatments employed were all chromate-free to maintain the goal of 

environmentally friendly bonding and repair methods. In this case, the aluminum was etched 

using the P-2 process.   For comparison, joints were also bonded using commercially available 
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adhesives.   FM73 and EA9628 were selected as film adhesives, and E9394 was used as a 

two-part paste formulation. 

The results of the aluminum-aluminum lap-shear testing (Table 17) are very encouraging. 

The strengths are higher than what has been reported for previously developed E-beam 

adhesives. They also approach the film-adhesive baselines. The large degree of scatter must be 

addressed during production of our best candidate materials. Failure analysis of the joints 

revealed less than consistent degrees of cure, indicating uneven E-beam irradiation. This issue 

will be addressed during future work. 

Table 17. Joint Strengths of Aluminum-Aluminum Single-Lap Joints (D-1002) 

Sample ID Lap-Shear Strength Tg 

MA3 3000 127 
MA4 3130 120 
MA5 3700 115 
MA6 5627 118 
MA23 2793 100 
MA24 1829 106 
MA43 1183 87 
MA73 2503 99 
HysolEA9394 3000 78a 

Cytec FM73 5875 116b 

HysolEA9628 5670 122c 

'Material safety data sheet.   Hysol EA9394, Dexter Aerospace Materials Division, 
Pittsburg, CA, 1997. 

bChester,  R.     Personal  communication.     Aeronautical  and  Maritime  Research 
Laboratory, Melbourne, Australia, 1998. 

°Product data sheet.  Hysol EA9628, Dexter Aerospace Materials Division, Pittsburg, 
CA, 1997. 

4.5 E-Beam Repair Adhesive Conclusions. Future efforts will concentrate on optimizing 

the downselected resin formulations to achieve the desired joint properties. Specifically, the 

base adhesive resins will be reformulated and more joints will be produced to expand the 

existing database and reduce the inconsistency of the joint strengths. These optimized resins will 
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be further formulated to include fillers, adhesion promoters, thixotropes, and other materials used 

in traditional adhesives. 

Research must also continue to develop improved one-part film adhesives. In the first year 

of the program, the feasibility of shelf-life-stable one-part resins was demonstrated. This 

approach must be continued to provide stable adhesives with performance comparable to the 

two-part resins described here. These efforts are underway, and some promising candidate 

systems have been derived. Once these materials have been produced, appropriate product forms 

will be produced and distributed for evaluation of properties. 

Further mechanical evaluation of optimized adhesive joints will be performed. These will 

include testing at elevated and subambient temperatures, fatigue, and joint fracture toughness. 

These data will provide added confidence in the properties of these adhesives and allow for 

comparison to traditional thermally cured adhesives. Furthermore, work will continue to monitor 

the aging characteristics of these resins to assess their shelf life. 

5. Resin Aging Study 

5.1 Introduction to Resin Aging Study. Many adhesive and composite material systems 

cure slowly during storage prior to use, as discussed in section 2.3. For these systems, 

processing and performance requirements can be met only within the designated storage period 

or shelf life (Figure 21). Shelf life is generally documented under a required level of reduced- 

temperature storage. Shelf-life restrictions are determined for each resin system by evaluating 

changes in the characteristics of the resins or components of two-part resin systems under 

various storage conditions. The limitations are based on maintaining characteristics that allow 

suitable processability and quality of the cured materials. Resins or components of resin systems 

that have exceeded shelf life are partially cured, can no longer be used, and are considered 

hazardous waste. 
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Figure 21.   Shelf Life Expires When Material Processing Characteristics No Longer Meet 
Specification Limits. 

Common materials used for composite repair in DOD applications are one- and two-part 

epoxy adhesives and resins, epoxy film adhesives, and glass- or carbon-fiber/epoxy prepregs. 

The one-part systems have all the materials needed to achieve full cure and must be stored under 

controlled-temperature conditions to slow the curing process. The two-part systems must be 

mixed to cure at expected rates; however, the epoxy part (Part A) can cure by itself, although at a 

slower rate. Shelf-life limits for these materials are typically 6-12 months. The new 

formulations are designed for cure by E-beam or induction processing and should have an 

extended shelf life. In particular, the formulations for E-beam cure are expected to have an 

infinite shelf life. An aging study is being performed to verify these expectations. 

5.2 Approach to Resin Aging Study. In the context of this repair effort, aging studies to 

identify the changes in characteristics of the resins and components are relevant to evaluating the 

shelf-life capabilities of current materials and proposed replacement materials. In this study, 

extent of cure is being determined at room temperature for current commercial adhesives, films, 

and prepregs that are used in repairing polymeric composites in defense applications. Resin 

systems formulated at the U.S. Army Research Laboratory (ARL) and University of Delaware, 

Center for Composite Materials (UD-CCM) that could potentially be used in Army repair 

applications are also being evaluated. Evaluation of existing resin systems was initiated when 

the relevance of the materials to the study had been determined. Resin systems formulated as 

part of the repair program are integrated into the aging study on an ongoing basis. Consequently, 
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materials are aged for different amounts of time based on when they were integrated into the 

study. 

The approach used in this study is to monitor the degradation of a particular functional group 

that is important to the shelf life of that particular sample. To monitor this degradation of a 

functional group, FTIR spectroscopy is applied. In FTIR, each excitation mode (vibration, 

stretching, overtone, etc.) of a chemical bond in the sample absorbs energy at a characteristic 

wavelength. The change in intensity of absorbance is related to the change in concentration of a 

chemical functional group. At first, the mid-infrared (MIR) range, 4000 cm"1 to 400 cm"1, was 

used to monitor the samples. Due to the spectral overlap that occurs in this region for the amine 

peak, the near-infrared (NIR) spectrum, from 7000 cm"1 to 4000 cm"1, was used to monitor the 

amine peak. Eventually, NIR was also used to monitor epoxy and acrylate peaks. 

The materials currently in the aging study are listed in Table 18 with reactive functional 

groups and approximate excitation wave numbers monitored. The functional groups of 

particular interest for the resins in this study are primarily amines, epoxies, and acrylates. 

Table 18. Aging Study Materials 

Sample Source Functional 
Group 

Wave 
Number 

9390 part A of two-part epoxy 
system 

Hysol Epoxy 916 

9390 part B of two-part epoxy 
system 

Hysol Primary 
Amine 

6510 

AF163-20ST epoxy adhesive 
film 

CytecFiberite Epoxy 916, 4530 

9628.045 PSFK epoxy adhesive 
film 

Hysol Epoxy 916, 4530 

R6376 epoxy prepreg Northrop Epoxy 916, 4530 
JDW71 one-part 
epoxy/methacrylate 

Army Research 
Laboratory 

Methacrylate 945, 6150 

JDW72 one-part 
epoxy/methacrylate 

Army Research 
Laboratory 

Methacrylate 945, 6150 

SBIR-ARL1 one-part epoxy Merlin Technologies, Inc. Epoxy 916 
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The sample preparation could differ slightly, depending on the initial state of each material 

(prepreg, adhesive film, liquid resin, solid resin) and the range of wave numbers used. As shown 

in Figure 22, all the samples are compressed between two 25-mm-diameter NaCl transparent 

crystal windows. For liquid resin systems, except for SBIR-ARL1, no additional preparation 

was needed before placing the sample on the crystal. In the MIR range, the adhesive film 

samples and the prepreg sample were diluted in acetone. The resin/acetone solution was then 

added to the crystal, and the acetone was allowed to evaporate off the crystal, leaving only the 

resin. The SBIR-ARL1 resin system was also diluted in acetone before being placed onto the 

crystal because the sample is not a liquid but a solid. A spacer was used between the crystals to 

regulate the thickness of each sample and to reduce evaporation losses. For the MIR range, a 

Teflon spacer was used for all materials. For the NIR range, a lead spacer was used for resin 

systems and no spacer was needed for adhesive films. After the sample was compressed 

between the NaCl crystals, it was placed in a cell holder for the duration of the study. At 

appropriate intervals, spectra were obtained to evaluate extent of cure. Between measurements, 

the samples were stored in a desiccator at room temperature. 

CELL 
HOLDER 

SAMPLE 
PLACEMENT 

HOLDER 

SPACERAND 
SAMPLE 

\ 

IRBEAM Na C! PLATES 

Figure 22. Exploded View of Sample Between NaCl Windows in the Sample Holder. 

46 



5.3 Results of Resin Aging Study. The effects of aging are evaluated using the fraction 

converted or extent of cure based on heights of significant peaks in the absorbance spectra. 

Figure 23 serves as an example for the AF163-20ST adhesive file. The peak at a wave number 

of 916 cm"l is monitored as a function of time with a notable reduction in height. 

AF 163-20ST Adhesive Film 

»0.25 XI 
< 

Epoxy Peak 

| Increasing Time 

1020   1000   980    960    940    920    900    880 

Wave Numbers fern"1) 

Figure 23. MIR Absorbance Spectra for AF163-20ST Adhesive Film. Note the Reduction 
in the 916 Peak Over a 5-Month Period. 

To quantify the results, peak height relationships vs. time are studied using the following 

formulas: 

a(t) = 1 - A(t)/A(0) (NIR: 7000 cm"1 to 4000 cm"1), 

and 

a(t) = 1 - A(t)/A(0) • Aref (0)/Aref (t)      (MIR: 4000 cm"' to 400 cm"1), 
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where 

a = fraction that reflects extent of cure, 

A = absorbance peak height of the reactive functional group, 

t = time, and 

Aref = absorbance peak height of a reference peak. 

In the IR range, evaporation and dimensional changes could have a profound effect on the 

results; therefore, a reference peak is used. The reference peak selected should be a peak of a 

particular functional group within the sample that does not have any reactivity. In the NIR 

region, no reference peak is needed, since evaporation effects are reduced and dimensional 

changes are small. Changes with time are addressed by using the baseline method. For NIR, 

transmittance is assumed to be constant or to vary linearly between the shoulders of a peak. 

Changes in the transmittance are treated as being uniformly affected by time. 

Results to date for the aging study are shown in Table 19 for the MIR range and Table 20 for 

the NIR range. Sources of variability for these data include ambient effects on the specimen 

during sample preparation, any changes in the desiccant over time, and changes in the crystal 

windows over time. For example, the NaCl windows can become fogged with absorbed 

moisture [10]. For short-term projects (one day), such effects are negligible; however, for 

long-term studies, these effects may be significant. Variability of ±5-10% is not uncommon in 

FTIR spectroscopy. Dimensional changes affect the results, and these changes tend to be more 

significant for MIR, where typical cell thicknesses are 0.01 to 1 mm, than for NIR, where cell 

thicknesses range from 0.1 to 10 mm [10]. The response of the material to each type of analysis 

varied; so, each material is discussed separately with observations regarding variability. 
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Table 19. Extent of Cure for MIR Range Observations 

Products Time 
(weeks) 

1-2 4-6 8-10 12-14 16-18 20-22 

Hysol 9390 part A of 
two-part epoxy system 

0.0 1.3 10.0 15.8 13.5 21.9 

AF163-20STepoxy 
adhesive film 

21.1 25.6 36.2 53.2 56.2 73.3 

Hysol 9628.045 PSFK 
epoxy adhesive film 

5.4 0.0 0.0 7.5 0.0 11.1 

R6376 epoxy prepreg 15.6 57.0 70.8 78.0 77.1 — 

JDW71 one-part 
epoxy/methacrylate 

0.0 0.0 0.0 — — — 

JDW72 one-part 
epoxy/methacrylate 

0.0 0.0 0.0 — — — 

SBIR-ARL1 epoxy 2.9 3.1 — — ' — — 

Table 20. Extent of Cure for NIR Range Observations 

Products Time 
(weeks) 

1-2 4-6 8-10 12-14 16-18 20-22 

Hysol 9390 part A of 
two-part epoxy system 

1.5 0.90 5.3 1.8 — — 

Hysol 9390 part B of 
two-part epoxy system 

1.1 2.7 3.2 4.3 6.9 5.9 

AF163-20ST epoxy 
adhesive film 

13.2 25.9 37.9 — — — 

Hysol 9628.045 PSFK 
epoxy adhesive film 

4.4 8.5 4.4 0.0 2.0 — 

R6376 epoxy prepreg 16.6 44.5 36.6 46.4 — 

JDW71 one-part 
epoxy/methacrylate 

3.0 6.1 — — — — 

5.3.1 Hysol 9390. Hysol 9390 is a commercial two-part epoxy system. The two parts, 

Part A containing epoxy and Part B containing amine, are both liquids that are mixed prior to 

use. Part A can begin to cure without the addition of Part B, causing the primary limitation on 

shelf life for this system. Part B is expected to have less effect on aging. Part A was evaluated 
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using both MIR and NIR. In both cases, significant changes in the spectra are observed, 

although at different times. The NIR results lag behind the MIR results, and differences in the 

sources of variability may have an effect on the cure timeline. Hysol 9390 Part B was evaluated 

using the reaction of an amine functional group. Due to the spectral overlap that occurs in the 

MIR region for the amine peak, only the NIR spectrum was used. Only small changes are noted 

in the NIR results for Part B. More rapid changes would be expected following mixing of the 

two parts for Hysol 9390. 

5.3.2 AF163-20ST. AF163-20ST is a commercial adhesive film. For MIR, the film was 

dissolved in acetone and the solution put on the NaCl window and allowed to dry. For NIR, a 

piece of the film was placed directly on the NaCl window. Results from both MIR and NIR 

show significant effects of aging on the extent of cure. 

5.3.3 Hysol 9628.045 PSFK. Hysol 9628.045 PSFK is a commercial adhesive film. 

Hysol 9628.045 PSFK has not aged significantly, and the results fluctuate. The aging of this 

sample is somewhat surprising. The sample contains both epoxy and amine; therefore, aging 

should occur at a more rapid rate. One explanation for the fluctuation in the results for this 

sample and others is that the baselines for the peaks under study change over time, causing errors 

in quantifying the results. In the MIR spectra for Hysol 9628.045, there is a clear indication that 

the baselines have changed. Effects of the acetone solvent drying may be important. Future 

work includes the same specimen preparation for MIR with a thorough drying procedure in a 

vacuum oven. 

5.3.4 R6376 Prepreg. R6376 prepreg is a reformulation of an epoxy prepreg. Significant 

effects of aging on extent of cure are observed in both MIR and NIR. Greater variability in the 

NIR results may be due to a thinner specimen than is desirable. For both wave number ranges, 

the specimen is prepared by dissolving the resin from the prepreg and then drying the solution on 

the crystal window. This produces a specimen of appropriate thickness for MIR but a rather thin 

specimen for NIR. 
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5.3.5 CAOl. CAOl is a one-part epoxy/methacrylate system formulated at ARL. No 

changes were observed in the MIR range. Variability was high in the NIR range (most likely an 

effect of significant effects in the baseline). There is a concern regarding the peak selected for 

measurement. Based on Horalek et al. [11], a double-bond acrylate peak is being evaluated, but 

more study is needed to confirm this selection. 

5.3.6 CA02. CA02 is also a one-part epoxy/methacrylate system formulated at ARL. No 

changes were observed in the MIR range. NIR evaluation of this material was begun at the same 

time as the CAOl material, and the effects of baseline variability were so pronounced that no 

measurements were recorded. 

5.3.7 SBIR-ARL1. SBIR-ARL1 is a one-part epoxy formulated by Merlin Technologies, 

Inc., as part of an SBIR program with ARL. Initial results may indicate changes in extent of cure 

based on MIR observations. No NIR measurements are available for this material. 

5.4 Resin Aging Study Conclusions. Preliminary results indicate that new formulations 

show promise to provide extended shelf life. In several cases, these are very preliminary 

conclusions, as the new formulations have been part of the aging study for relatively short 

periods of time. The aging study will continue into the next year of the program and will include 

downselected materials that have been formulated. As part of the aging study, work will 

continue on evaluating the effect of solvents, such as acetone, in the specimen preparation for 

MIR and on the effect of baseline drift. 
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